Research Institute for Advanced Computer Science
NASA Ames Research Center

Projection Methods for the Numerical Solution
of Markov Chain Models —
/N G5

Youcef Saad y3/0/7'

pi

October 1989

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 89.40

NASA Cooperative Agreement Number NCC2-387

., _ 3
(NASA-CR-188905) pROJECTION METHODS FOR THE N92-1374

NUMERTICAL SCLUTIGM QF MARKGV CHAIN MODELS

‘ ; ed Computer
‘R?SQ?TC“ Inst. for Advance P CscL 12A Unclas
- scirnce) 17D 63/65 0043107







Projection Methods for the Numerical Solution
of Markov Chain Models

Youcef Saad
October 1989

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 89.40

NASA Cooperative Agreement Number NCC2-387






Projection Methods for the Numerical Solution
of Markov Chain Models

Yaucef Saad

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 89.40
October 1989

This paper gives an overview of projection methods for computing stationary probability
distributions for Markov chain models. A general projection method is a method which seeks an
approximation from a subspace of small dimension to the original problem. Thus, the original
matrix problem of size N is approximated by one of dimension m, typically much smaller than N.
A particularly successful class of methods based on this principle is that of Krylov subspace
methods which utilize subspaces of the form spanfv, av, .....A™!v}. These methods are effective
in solving linear systems (Conjugate Gradients, GMRES, ...) and eigenvalue problems (Lanczos,
Amoldj, ...) as well as nonlinear equations. They can be combined with more traditional iterative
methods such as SOR, SSOR, or with incomplete factorization methods to enhance convergence.

Work reported herein supported by Cooperative Agreement NCC2-387 between the National
Aeronautics Space Administration (NASA and the Universities Space Research Association
(USRA).



" —

1 Introduction

In Markov chain modeling, one often seeks the stationary probability distributions of a
system that can occupy a number of N different states. If we number these states from 1 to
N, and call 7; the probability of the system to be in state i at equilibrium, i.e., in the long
run, then the basic equation to compute these probabilities is

P=nx (1)

where = [m1,73,...,my] is the row vector comprised of the stationary probabilities, and
P is the matrix of transition probabilities: p;; is the probability that the system switches
from state i to state j for i # j and pi = 1 — ¥4 pi;. The system (1) can be viewed
as an eigenvalue problem, or more precisely an eigenvector problem, since the eigenvalue is
known to be unity. In fact the right eigenvector is known and we seek the left eigenvector.
Alternatively, defining

g Q=I-P (2)

we may rewrite (1) as

Q=0 or QTxT =0 (3)
which is a homogeneous linear system to solve. The reason why we distinguish between these
two view-points is that there are methods that are well-known for linear systems but have no
equivalent for eigenvalue problems and vice versa. We can choose effective algorithms from
both camps. For example, subspace iteration which is one of the methods used in Markov
chain modeling, is not directly applicable for solving linear systems.

When the number of states is small then there are a number of reliable techniques that
can be used to solve (1), for example an inverse iteration approach based on Gaussian
elimination. The difficulty is that in practice the number of states for realistic systems can be
enormous and the cost and storage of the standard methods becomes prohibitive. The main
philosophy of projection methods is to avoid costly manipulations on the original matrix.
Rather, the main operations performed with the matrix are matrix by vector multiplications.
The matrix P is usually very sparse so that storage is not a big burden and matrix by vector
multiplications are inexpensive.

The organization of the paper is as follows. We start by describing general projection
processes for both eigenvalue problems and linear systems in Section 2. In Section 3 we
take on the eigenvalue point of view and describe two techniques based on this approach.
The linear systems point of view will then be described in Section 4 with some specific
approaches. Some numerical tests will then be reported.

2 Projection methods

2.1 Projection techniques for solving linear systems

We start with the linear system of linear equations,

Az =b (4)



where A is a large sparse nonsymmetric matrix. A projection process to solve (4) is a tech-
nique that computes an approximation to (4) from a subspace of dimension m by enforcing
some orthogonality condition on the residual vector r = b — Az. More precisely, let K be
a subspace of dimension m from which we seek the approximation to z and let L be an-
other subspace of dimension m which will define the orthogonality conditions. We define the
approximate solution by writing that

i € K (5)
b—As L I (6)

Since the approximation z lies in a subspace of dimension m and (6) imposes m conditions,
there will in general, but not always, exist a unique solution to the above problem, but we
will come back to this problem later.

The approach just described is known as the Petrov-Galerkin projection method. A
particular cise of importance is when L = K. Then the method is called an orthogonal
projection method or a Galerkin method. .

Let P be the orthogonal projector onto K: for any z, Pz is uniquely defined by Pz €
K,(I - P)x L K. Similarly, let Q be the (oblique) projector onto K and orthogonal to
L: for any z, Qz is uniquely defined by Qz € K, (I — @)z L L. For this projector to be
defined it is assumed that no vector of X is orthogonal to L, or equivalently, that no vector
of L is orthogonal to K. Then the Petrov-Galerkin method consists of replacing the original
problem by the problem of finding # satisfying the equations Pz = z, and Q(b— Az) = 0.
In other words, Z is a nontrivial solution of

Q(b— AP:) =10 (M)

which takes the form )
Az = Qb (8)

where we have set A = QAP. :

The question that arises next is: given the two subspaces K and L, how accurate should
we expect the approximate solution to be? It is in general difficult to answer this question.
The element of K that is the closest to the exact solution z* in the 2-norm sense is clearly
Pz*. So the error in the 2-norm sense must be larger than ||(I — P)z*||;. This is an upper
bound but we wish to find a lower bound. Typically one would like to establish an upper
bound on the residual norm b — Az in terms of, for example, (I — P)z*. We know of no
simple error bounds of this type for general projection methods in the nonhermitian case.
However, we can easily establish an a-priori residual bound for the approximate problem.
More precisely,

Theorem 2.1 Lety = |[QA(I — P)||,. The ezact solution z* satisfies the following residual
condition with respect to the approzimate problem (8):

1Qb — Az*||; < ¥]|(Z - P)="||, (9)



i

Proof : We have

Qb— Az" = QAz" — QAPz* = QA(I - P)z° (10)

Since I — P is a projector this gives - -
Qb— Az* = QA(I - P)(I - P)z* (11)
which immediately yields the result. O

In many of the projection methods, b is a vector of K so that we have Qb = b. This theorem
shows that when the distance between the exact solution z* and the subspace K is small
then a good approximation can be obtained provided that the norm of Q is not too large
and that the projected problem is not too poorly conditioned. In the orthogonal projection
case, = P and we get v < || 4.

In practice, one needs to work with some convenient basis of the subspace K. Given a
basis V' = [v1,v2,...,up) of K and a basis W = [w1, w3, ..., wm] of L, and writing & = Vmy
where y is in R™, we see immediately that y must satisfy

WI(AV,y—b)=0 (12)

or

Hy =WZb (13)

where we have set H = WZAV,,.

There are two important particular cases for L. The case when L = K , we have already
mentioned. The second case of importance is when L = AK because it is equivalent to
minimizing the residual norm on the subspace K. More precisely, we have the following
theorem, see for example [16].

Theorem 2.2 When L = AK then the approzimate solution # minimizes the residual norm
over the subspace K.

We refer to this class of projection methods as the class of minimal residual methods. An
example of such a technique will be described later in Section 3.

It is important to consider the effect of using a nonzero initial guess for approximating
the solution. If we had a guess z, to the solution of (4) we would attempt to find a vector
6 in K so that the update o + & satisfies the usual Petrov-Galerkin conditions. In other
words, we would write

b—A(20+6)J_L or To-A&.LL (14)

with the usual notation ry = b — Az,.

In Markov chain modeling, the matrix A is singular and b = 0 and we would like to
show how to adapt the methods just described to this situation. A direct application of the
previous principles would lead to a projected problem of the form

Hy=0. (15)

4



Unfortunately, there is no reason for H to be a singular matrix and as a result the only
solution to (15) would be y = 0 in general. The difficulty does not arise if we take the
nonzero initial guess formulation discussed above. Then the projected problem becomes

Hy=QTro (16)

in which ro = b — Azq = —Az,. Notice that if the matrix A happens to be singular, then
one can take the solution of (16) to be an eigenvector of the matrix H associated with the
eigenvalue zero. With this modification one can say that the projected problem always has
a solution. The only possible concern might be the practicality of the decision to declare
a matrix singular. The real question is whether or not a nearly singular matrix could lead
to a substantially different result than would be obtained by considering it to be singular,
However, if the matrix is nearly singular then the solution of (16) is equivalent to a form of
inverse iteration and the result, after normalization, should be an accurate approximation
to the exact eigenvector associated with the eigenvalue zero.

For the minimal residual methods referred to earlier there is no difficulty in defining the
approximate solution in the formulation where zo 3 0. This is because the approximate
solution minimizes the 2-norm of 7o — A8 over § € K and this optimization problem always
has a unique solution.

2.2 Projection techniques for solving eigenvalue problems

We now consider the standard eigenvalue problem,
Az =)z (17)

Similarly to the previous section, we assume that we are given two subspaces K and L,
and we seek an approximate eigenvalue A € C and an approximate eigenvector  from the
subspace K, by imposing the Petrov-Galerkin condition

Az -Az1L A (18)

Similarly to the previous section, if P is the orthogonal projector onto K and Q is the oblique
projector onto K orthogonally to L, then the original problem is replaced by the projected
problem )

Az =3z (19)
and we can show a theorem similar to the main theorem of the previous section, namely

Theorem 2.3 Let v = ||QA(I — P)||z. The ezact eigenvector = associated with the ezact
eigenvalue A satisfies the following residual condition with respect to the approzimate problem

(16),
I(4 = ADzll2 < /42 + AR = P)z]ls (20)

The proof of this result is similar to the one shown in the previous section for linear
systems and can be found in [13].



3 Methods for eigenvalue problems

We consider two sample eigenvalue methods used in Markov chain modeling. The first is a
technique based on the subspace iteration method of Bauer [3]. Tt has been used with good
success for Markov chain modeling [7, 18]. The second is a2 method due to Arnoldi [1] in
1951.

3.1 Subspace Iteration

One of the simplest methods for computing invariant subspaces is the so-called subspace
iteration [7, 18] methods well-known to the structural engineers. In its simplest form, the
method is equivalent to a projection method onto the subspace K = span{A™Vy} where V,
is an initial set of p columns, i.e., an N x p matrix. Note that the dimension of the subspace
K is constant. One of the forms of the subspace iteration algorithm can be described as
follows.

1, Choose an initial orthonormal system V; = [v1,2,...,Vm] and an integer k;
2. Compute X = A*V; and orthonormalize X to get V.

3. Perform a projection process with V, i.e., compute the cigenvalues and the matrix U
of eigenvectors of the matrix C = VTAV.

4. Test for convergence. If satisfied then exit else continue.

5. Take Vo = VU, the set of approximate eigenvectors choose, a new k and go to 2.

A well-known alternative consists of replacing the set of eigenvectors U in steps 3 and 5
by the Schur vectors of the matrix C, i.e., the column vectors of the matrix that transforms
C in upper quasi-triangular form [19, 15]

The above algorithm utilizes the matrix A only to compute successive matrix by vector
products w = Av, so sparsity can be exploited. However, it faces the drawback that it is
generally a slow method.

Often, Chebyshev iteration is used to accelerate convergence: step 2 is replaced by X =
tx(A)Vo, where ¢, is obtained from the Chebyshev polynomial of the first kind, of degree k,
by a linear change of variables. The three-term recurrence of Chebyshev polynomials allows
to compute a vector w = ¢3(A)v at almost the same cost as A*v. Moreover, it is then possible
to compute the rightmost (or leftmost) eigenvalues of A. Also, performance is improved as
this is the usual primary reason for using Chebyshev iteration. Details on implementation
can be found in [14].

Subspace iteration as described above is seldom competitive with methods that use a
combination of preconditioning and Krylov subspace methods described later. If we use a
block-size of p, then the convergence rate for the eigenvalue \; = 1, is of the order of |A,41],
if we order the eigenvalues by decreasing order of magnitude.



i

3.2 Arnoldi’s method

A second method used in the literature is the Arnoldi process [1, 11] which is a projection
process onto the so-called Krylov subspace

K. = span{v,, Av,,...,A™ o, }. (21)

The algorithm starts with some nonzero vector v, and generates the sequence of vectors v;
from the following algorithm,

Algorithm: Arnoldi

1. Initialize:
Choose an initial vector v, of norm unity.

2. Iterate: Do j = 1,2,...,m

1. Compute w := Av;

2. Compute a set of j coefficients h;; so that

wi=w— 21: hijv; (22)

=1
is orthogonal to all previous v;’s.

3. Compute hjyy,; = ||w||2 and vjy; = w/hji .

By construction, the above algorithm produces an orthonormal basis of the Krylov sub-
space K = span{v, Av,...,A™ v;}. The m x m upper Hessenberg matrix H,,, consist-
ing of the coefficients k;; computed by the algorithm, represents the restriction of the linear
transformation A to the subspace K,,, with respect to this basis, i.e., we have

H,, = VIAV,, (23)

where V,, = [v1,v3,...,v]. Approximations to some of the eigenvalues of A can be obtained
from the eigenvalues of H,,. This is Arnoldi’s method in its simplest form.
Note the useful relation for later use,

AVm = Vm+1.§m (24)
VmHm + hm+1.mvm+le£ (25)
where H,,. is the (m + 1) x m upper Hessenberg matrix whose nonzero elements are the h;;

defined in the above algorithm. In other words H,, is obtained from H,, by appending the
row [0,0,...,0,Ahm41,m] toit.



As m increases, the eigenvalues of H,, that are located in the outermost part of the spec-
trum start converging towards corresponding eigenvalues of A. In practice, however, one
difficulty with the above algorithm is that as m increases cost and storage increase rapidly.
One solution is to use the method iteratively: m is fixed and the initial vector v, is taken at
each new iteration as a linear combination of some of the approximate eigenvectors. More-
over, there are several ways of accelerating convergence by preprocessing v, by a Chebyshev
iteration before restarting, i.e., by taking v, = t,(A)z where z is again a linear combination
of eigenvectors.

A technique related to Arnoldi’s method is the nonsymmetric Lanczos algorithm |9, 4]
which delivers a nonsymmetric tridiagonal matrix instead of a Hessenberg matrix. Unlike
Arnoldi’s process, this method requires multiplications by both A and A7 at every step. On
the other hand it has the big advantage of requiring little storage (5 vectors). Although no
comparisons of the performances of the Lanczos and the Arnoldi type algorithms have been
made, the Lanczos methods are usually recommended whenever the number of eigenvalues
to be computed is large.

4 Methods for linear systems

4.1 FOM and GMRES

In this section we take the point of view that we want to solve the linear system Az = b.
We start by assuming that the system is nonsingular. The methods to be described here are
based on Krylov subspaces. Assume that we have an initial guess zo with residual vector
ro = b— Azy. We will take

v1=ro/B, where B= oz (26)

and run m steps of Arnoldi’s methods starting with the vector v; thus defined. To apply
a Galerkin projection process onto the subspace K,,, we need to seek a vector §,, € K
that satisfies the conditions (14) with L = K. Writing 6 = Viuym and the orthogonality
condition . .

V:(To - A'Umym) =0

yields immediately

¥m = H,'fey (27)
where we have set 8 = ||ro||; and used the orthogonality of V;, and the relation (23). Thus
the approximate solution takes the form

T = 2o + V. H, Be, (28)

The method described above which consists of generating the Arnoldi basis V,, with vy
defined by (26) and the approximate solution via (28) is referred to as the Arnoldi process
for linear systems or “Full Orthogonalization Method” [12]. A detail that is important for



the implementation is that the residual norm of the approximate solution can be determined,
without explicitly computing the solution, via the formula

18— Azmlz = |hms1,memym|- (29)

which is a direct consequence of (25). : -

Although not proved rigorously, it is usually observed that as m increases, the approx-
imate solution z,, rapidly approaches the exact solution. Ideally, one would like to use a
large enough m that z,, is as close as desired to the solution. However, this is not feasible in
practice because of the rapid increase in the storage requirement as the dimension m of the
subspace increases. Therefore, the basic idea described above is usually implemented with
restarting. The dimension m is fixed, and the method is after each outer loop consisting of
the process just described the initial guess zg is reset to be equal to z,, and the process is
restarted until convergence is achieved. ,

One drawback of the above algorithm is that from the theoretical point of view there is
little known concerning convergence. For this reason, several authors have instead turned
to methods with optimal properties: for example one may seek a method that minimizes
the residual norm over the whole subspace K. As was seen before, this is realized by taking
L = AK. One such version is the GMRES algorithm [17]. In GMRES, one seeks to minimize
the residual norm of the approximate solution in the affine subspace z¢ + K,,. This means
that the approximate solution zo + V,,y must minimize J(y) = |b — AV.y|l2 over y € R™.
Utilizing the relation (24) we get

J(¥) = ||b— A(zo + Va2 = lIro — AVmyll2
= [1Bv1 = Vonr1 Hmyllz = ||Vinsa[Ber — Byl
= ||Ber — Hnylla

The last equality is a consequence of the orthogonality of the vectors v;’s. Therefore the
only difference between this approach and the FOM approach is the way in which the vector
y is obtained. In one case it is obtained by solving the m x m linear system (27) and in the
second by solving the least squares problem

Find y, solution of: min ||Be; — Hnyla (30)
velR

Similarly to the FOM method, there exists a formula that allows to compute the residual
norm of z,, without computing z,,. This is based on the trivial equality

b — Azmll2 = min ||Be: — Hnylla. (31)
veR

In a practical implementation of the GMRES algorithm, the Hessenberg matrix is progres-
sively reduced to upper triangular form by using Givens rotations. The same rotations are
applied to the right-hand-side Be;. Because the last row of the resulting matrix is a zero row,
the above minimum can be seen to be equal to the bottom element of the right-hand-side



after these rotations. This provides the residual norm of the current iterate for free without
having to compute the iterate itself.
In summary we can put the two methods within the same framework as follows.

Algorithm : FOM / GMRES

1. Start: Choose z,.

2. Arnoldi process:

o Compute 1o := b — Az ;
¢ Compute 8 = ||ro]|2 ; and v; = 7o/B.
o Arnoldi process. For j = 1,2,--., do:

(2) Form Av; and orthogonalize it against the previous vy,:--,v; via
hi; = (Avjvvi)a 1=1,2,---,j,

j
i1 = Avj — D hijui (32)
i=1
hi+1i = l19j41l2, and
vis1 = D /hjn
(b) Compute the residual norm p; = ||b— Az;||2, of the solution z; via the formula
(29) and (31).
(c) If p; < e set m = j and go to (3).

3. Form the approzimate solution:

Define H,, to be the (m + 1) x m (Hessenberg) matrix whose nonzero entries are the
coefficients h;j, 1 <i < j+1, 1 <j < m,and H,, the m x m submatrix obtained from
H,, by removing its last row. Let V,, = [v;,03,:++,vm], and where ¢; = [1,0,...,0]7.
Then:

FOM:
o Compute z,, = z¢ + SV H le;.
GMRES:

o Find the vector y,» which minimizes ||8e; — Hny||z, over all vectors y in R™.

o Compute z,, = z¢ + V9,

4. Stopping test: If z,, is determined to be a good enough approximate solution to (4),
then stop, else set z¢ := z,, and go to 2.

10



4.2 Preconditionings

Often the projection methods themselves are not sufficient to achieve good performance and
preconditioning is necessary. Typical preconditioning techniques consist of approximating
the original matrix by a ‘close by’ matrix M and then solving a preconditioned system such
as

M~'Az = M~ (33)

by some suitable iterative method. For this approach to be practical it is necessary that
the linear system solution with the matrix M be inexpensive and easy to implement. In the
core of the Krylov subspace algorithm that is used, the matrix by vector product is replaced
by a matrix vector product followed by a linear system solve with the matrix M. Thus
the modifications to the algorithm FOM/ GMRES displayed above is simply to replace all
occurrences of A by M~'A, and the right hand side by M~'b. One can also precondition
by solving the system

i AM™z=1b (34)

whose solution z is related to the solution of the original system by z = M~1z. There
are no a-priori reasons for using this right-preconditioning approach rather than the left
preconditioning approach, except that an approximate solution Z for the system (34) has the
same residual vector as for the original system.
The simplest preconditioning technique is the incomplete LU factorization which consists
of factoring A as
A=LU+E (35)

where the matrix LU matches A everywhere where there are nonzero elements and E is
a remainder. The matrix M = LU is then used as a preconditioning matrix. Note that
the exact LU factorization of A would require far more computation and storage than the
incomplete LU factorization whose cost is typically of the order of N Z, the number of nonzero
elements of A. The simplest form of incomplete factorization is one in which the I matrix
has the same structure as the lower part of A and the U has the same structure as the upper
triangular part of A. This is referred to as the ILU(0) precond_ltlomng to account for the
fact that no fill-in is allowed.

The incomplete LU factorization outlined a.bove exists for M matrices and can be com-
puted by a very simple procedure which consists of performing the LU factorization and
replacing by zero any nonzero elements that is introduced outside of the nonzero structure
of A, during the process.

We are interested in the incomplete factorization of the matrix A = QT but since this
matrix is singular the classical results on the existence of the ILU factorization [8] do not
readily apply to this case. However, these classical results can be trivially extended to such
matrices by, for example, adapting the results in [2], page 42.

The quality of the ILU(0) preconditioning can be improved in several ways by allowing
more fill-in. A notion that is used in this regard is that of level of fill-in: initially all elements
have level of fill-in equal to zero. Thereafter, at each step the level of fill-in of an element is
updated by adding one to the sum of the levels of fill-ins of its parents in L and U. Here the

11



parent-child relation corresponds to the creation of a fill-in element by the basic operation
in Gaussian elimination. ILU(k) will then correspond to dropping all elements whose level
of fill-in exceeds k. Thus ILU(0) is the usual incomplete LU factorization with no fill-in.

As can be seen this incomplete factorization technique relies entirely on the structure of
the matrix and not at all on the actual values of its elements. For a large class of problems
that come from PDE’s this is usually sufficient because of the fact that these matrices are
M-matrices. On the other hand, the situation may be different for other classes of problems.

An alternative used is to drop the elements during the ILU factorization according to
their magnitude rather than their position. Several such techniques exist [6, 20]. Some are
implemented in the context of direct solvers such as in MA28 [5] and in Y12M [20]. Here a
rather accurate incomplete factorization is usually performed and a simple technique such as
iterative refinement is used as an iterative procedure. In the context of iterative solvers, one
can simplify the factorization process enormously [6, 10]. One drawback of this approach is
that it is rather difficult to predict the storage that will be necessary during the factorization.
A second alternative would be to only keep a given number of elements per row during the
incomplete factorization. Two techniques based on the two approaches outlined above have
been implemented and tested on realistic Markov chain problems in [10].

In addition to incomplete factorization preconditionings one can also use the more tra-
ditional relaxation methods such as the SOR, or SSOR iteration, as preconditioners. Our
experience in [10] with these techniques on real Markov chain problems is that they are not
as efficient as the ILU type preconditioners. For further details see [10].

5 Numerical tests

The following illustration is taken from [10]. It compares a few of the methods described in
this paper and includes the power method referred to here as the fixed point iteration and
a direct solver (GE).

The example deals with the system architecture of a time shared, multiprogrammed,
paged, virtual memory computer. The system is composed of a set of N terminals, a central
processing unit, a secondary memory, and a filing device. This real-life example models
requests to each of the devices of the system that are queued and scheduled on a first come
first served basis. For further details see [10]. The matrix Q obtained here is of dimension
1771 with 11,011 nonzero elements.

The following table shows various statistics associated with the performance of several
methods for solving the matrix equation QTz = 0. The direct solver called GE is without
pivoting and without any reordering. All runs have been made on a Ardent Titan computer
in double precision. The compiler option used was -03. but no additional optimization of
the code was performed.

12



Method Total | Set-up | Iter. | Flops | Additional | Iters | Residual
" Method Parameters Time | Time | Time Memory Norm "
ARNOLDI | m=10 51.4 32.9 17,971 | *1010 | 0.121E-04
m=20 46.5 51.5 36,341 | *1020 | 0.131E-03
‘m=25 83.1 96.8 45,676 | *1625 | 0.184E-03
PCARN/
+ILUO m=5 19.8 0.3 | 19.3 4.8 23,408 160 | 0.324E-10
m=10 15.7 0.3 | 15.2 5.6 32,263 150 | 0.811E-10
+ILUK m=10, K=5 9.1 33| 56 2.5 30,050 70 | 0.291E-10
m=10, K=10, 5.9 4.3 14 0.5 38,735 10 | 0.409E-11
+ILUTH | m=10, 7 =.01 15.1 16| 134 7.1 26,104 | 230 | 0.543E-10
m=10, 7 =.001 | 11.6 18] 9.7 3.0 32,142 80 | 0.205E-10
GMRES / .
+ILUO m=>5 149.1 0.3 | 148.6 23,408 | *1600 | 0.210E-06
m=10 16.4 0.3 | 15.9 5.2 32,263 140 | 0.632E-10
m=20 16.5 0.3 | 16.0 8.7 49,973 160 | 0.715E-10
+ILUK m=10, K=5 7.5 33| 41 1.8 30,050 50 | 0.922E-10
m=10, K=10 5.8 42| 14 0.5 38,735 10 | 0.438E-11 "
+ILUTH | m=10, r =.01 13.0 1.6 | 11.2 5.5 26,104 180 | 0.579E-10
m=5, 7=.001 | 924 1.7 | 90.5 23,287 | *1000 | 0.298E-06
m=10, r=.001 | 97.2 1.8 | 95.2 32,142 | *1000 | 0.204E-06
m=20, 7 =.001 9.9 1.8| 8.0 4.3 49,852 80 | 0.746E-10
GMRES /
+SOR m=10, w =1.0 94.5 373 17,710 | *1000 | 0.529E-06
m=10, w=1.95| 49.8 18.7 17,710 | *500 | 0.416E-03

Table 1: Performance results for test example. N=1,771; NZ=11,011. NCD Case.

In the figure ILUTH refers to an ILU factorization with threshold 7, which consists of
dropping all elements during the factorization that are smaller than 7 in magnitude. ILUK
refers to a strategy whereby only the K largest elements in L and in U are kept.

As can be seen from this example Gaussian elimination is faster than the iterative solvers,
although it requires far more storage. However, for the larger problems treated in [10]
Gaussian elimination was too slow or required too much memory. In some cases it also
failed to produce an answer. Among the iterative solvers tested and not shown in the
table, were the SOR method and the preconditioned power method. The SOR method was
generally not reliable because of the demand for an optimal parameter. As for the power
method it converged more slowly than the methods shown here. One surprising observation
made in the experiments in [10] is the fact that the FOM method was often more reliable
than its GMRES counterpart. Another point that is not too well understood is the effect
of improving the incomplete factorization by taking, for example, a smaller threshold in

13



ILUTH, or a larger K in ILUK. Whereas the quality of the factorization improves, since
the error matrix F is smaller, this does not always mean that the number of iterations in
the preconditioned Krylov Subspace method will be smaller. This is clearly illustrated in
the table. The phenomenon may be due to the fact that the L and U factors produced
by a more accurate factorization have in fact a worse condition number than with the less
accurate factorization. The relation between the accuracy in the preconditioning technique
and the overall performance is not clear. Note however, that the best results are obtained

with the more accurate preconditioners.

References

[1] W. E. Armoldi. The principle of minimized iteration in the solution of the matrix
eigenvalue problem. Quart. Appl. Math., 9:17-29, 1951.

[2] O. Axeisson and V. A. Barker. Finite Element Solution of Boundary Value Problems.
Academic Press, Orlando, Florida, 1984.

[3] F. L. Bauer. Das verfahren der treppeniteration und verwandte verfahren zur losung
algebraischer eigenwertprobleme. ZAMP, 8:214-235, 1957.

[4] J. Cullum and R. Willoughby. A Lanczos procedure for the modal analysis of very large
nonsymmetric matrices. In Proceedings of the 28rd Conference on Decision and Control,
Las Vegas, 1984.

[5] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Claren-
don Press, Oxford, 1986.

[6] A. Jennings and G. M. Malik. Partial elimination. J. Inst. Math. Appl., 20:307-316,
1977.

[7] A. Jennings and W.J. Stewart. A simultaneous iteration algorithm for real matrices.
ACM, Trans. of Math. Software, 7:184-198, 1981.

(8] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear systems
of which the coefficient matrix is a symmetric M-matrix. Math. Comp., 31(137):148-162,
1977. :

[9] B. N. Parlett and D. R. Taylor andf Z. S. Liu. A look-ahead Lanczos algorithm for
nonsymmetric matrices. Mathematics of Computation, 44:105-124, 1985,

[10] B. Philippe, Y. Saad, and W. J. Stewart. Numerical methods in markov chain modeling.
Technical Report 89.39, RIACS, NASA Ames, Mofett Field, CA, 1989.

[11] Y. Saad. Variations on Arnoldi’s method for computing eigenelements of large unsym-
metric matrices. Linear Algebra Appl., 34:269-295, 1980.

14



[12] Y. Saad. Krylov subspace methods for solving large unsymmetric linear systems. Math-
ematics of Computation, 37:105-126, 1981.

[13] Y. Saad. Projection methods for solving large sparse eigenvalue problems. In
B. Kagstrom and A. Ruhe, editors, Matriz Pencils, proceedings, Pitea Havsbad, pages
121-144, Berlin, 1982. University of Umea, Sweden, Springer Verlag. Lecture notes in
Math. Series, Number= 973.

[14] Y. Saad. Chebyshev acceleration techniques for solving nonsymmetric eigenvalue prob-
lems. Mathematics of Computation, 42:567-588, 1984.

(15] Y.Saad. Numerical solution of large nonsymmetric eigenvalue problems. Comput. Phys.
Comm, 53, 1989.

[16] Y.Saad and M. H. Schultz. Conjugate gradient-like algorithms for solving nonsymmetric
linear systems. Mathematics of Computation, 44(170):417-424, 1985.

[17] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7:856-869, 1986.

[18] G.W. Stewart. Simultaneous iteration for computing invariant subspaces of non-
hermitian matrices. Numer. Math., 25:123-136, 1976.

[19] G.W. Stewart. SRRIT - a fortran subroutine to calculate the dominant invariant sub-
spaces of a real matrix. Technical Report TR-514, University of Maryland, College
Park, MD, 1978.

[20] Z. Zlatev. Use of iterative refinement in the solution of sparse linear systems. SIAM J.
Numer. Anal., 19:381-399, 1982.

15






